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Abstract In this paper we devise the stochastic and robust approaches to study the
soft-capacitated facility location problem with uncertainty. We first present a new sto-
chastic soft-capacitated model called The 2-Stage Soft Capacitated Facility Location
Problem and solve it via an approximation algorithm by reducing it to linear-cost
version of 2-stage facility location problem and dynamic facility location problem.
We then present a novel robust model of soft-capacitated facility location, The Robust
Soft Capacitated Facility Location Problem. To solve it, we improve the approxima-
tion algorithm proposed by Byrka et al. (LP-rounding algorithms for facility-location
problems. CoRR, 2010a) for RFTFL and then treat it similarly as in the stochastic
case. The improvement results in an approximation factor of α + 4 for the robust
fault-tolerant facility location problem, which is best so far.

Keywords Facility location · Approximation algorithm · 2-Stage · Robust ·
Stochastic · Soft-capacitated

1 Introduction

Given two discrete sets of clients and candidate locations where to build facilities,
in the classic Uncapacitated Facility Location Problem (UFL) we are to pick some
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locations and build facilities on them so that each client can connect itself to a facility,
in order to minimize the building and connection cost. There are a lot of variations
of this problem (e.g. Li et al. 2012b). Such models capture some essence of facility
location, but fail to deal with the uncertainty in decision making that is very common
in realistic settings.

Usually facility location decisions are expensive and hard to reverse, and their
influence lasts a long time. Any of the parameters of the problems, e.g. costs, demands,
distances, may change greatly during the time when design decisions are in effect.
Further, because of poor measurements or tasks inherent in the modeling process such
as aggregating demands points and choosing a distance norm, parameter estimates
may also be inaccurate. For the sake of this, researchers have been developing models
for facility location under uncertainty for several decades (cf. Snyder 2007).

One approach to handle the uncertainty is the study of The 2-Stage Stochastic Facil-
ity Location Problem (TSFL) (see Byrka et al. 2010a; Srinivasan 2007; Swamy and
Shmoys 2005; Swamy 2004). In which, there are two stages of decision making and
a set of scenarios which are subsets of the set of all clients, each happening with a
prefixed probability. Upon the first stage, we open facilities without the specific knowl-
edge of clients; then in the second stage the realized scenario enters, we are allowed to
open additional facilities but with much higher opening cost, and connect the clients to
the opened facilities. The aim is to minimize the facility opening cost of the first stage
plus the expected cost incurred in the second stage. This problem is introduced by
Swamy and Shmoys (2005). The approximation ratio is then improved by Srinivasan
(2007) to 2.369. Byrka et al. (2010a) use the techniques they developed for UFL to
obtain a 2.298-approximation algorithm. The best ratio is 1.86, due to Ye and Zhang
(2006). In that paper they solve The Dynamic Facility Location Problem (DFL) using
primal-dual algorithm combined with greedy procedures, and TSFL is just a special
case of DFL. There is another trend of analysis that derives per-scenario bound for
TSFL. Swamy (2004) obtains a 3.378 bound and is improved by Srinivasan (2007) to
3.25. Then Byrka et al. (2010a) further improves the bound to 2.496. (However, they
have overlooked best parameters and their algorithm is in fact of ratio 2.425.)

The Soft-Capacitated Facility Location Problem (SCFL) is similar to the UFL
except there is a soft-capacity ui associated with each facility i, which means if we
want this facility to serve k clients, we have to open it �k/ui� times at a cost of �k/ui� fi .

This problem is also known as facility location problem with integer decision variables
in the operations research literature (see Bauer and Enders 1997). Chudak and Shmoys
(1999) gave a 3-approximation algorithm for SCFL with uniform capacities using LP
rounding. For non-uniform capacities, Jain and Vazirani (2001) showed how to reduce
this problem to the UFL, and by solving the UFL through a primal-dual algorithm,
they obtained a 4-algorithm. A local search algorithm proposed by Arya et al. (2001)
had an approximation ratio 3.72. Following the approach of Jain and Vazirani (2001),
Jain et al. (2002) showed that the SCFL can be solved within a factor of 3. This result
was further improved by Mahdian et al. (2006) to a 2.89-approximation algorithm
for SCFL. Later they present a 2-approximation algorithm for the same problem in
Mahdian et al. (2003), achieving the integrality gap of the natural LP relaxation of the
problem. This is the best result so far. The main idea of their approach is to consider
algorithms and reductions that have separate approximation ratios for facility and
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connection cost. There is another capacity called hard-capacity in which we cannot
open any facility multiple times (cf. Zhang et al. 2002).

In this paper we extend the SCFL and introduce The 2-Stage Soft-Capacitated
Facility Location Problem (TSSCFL). TSSCFL is defined the same as TSFL except
that there is a soft-capacity associated with each facility. By reducing it to The 2-
Stage Linear-Cost Facility Location Problem (TSLCFL), we are able to approximate
TSSCFL within constant factor in polynomial time. The 2-Stage Linear-Cost Facility
Location Problem is defined similarly as TSFL except now the cost function is linear
on the number of clients each facility serves. More precisely, here f I

i = a1
i k + b1

i
and f A

i = a2
i k + b2

i , where f I
i is the facility opening cost of the first stage and f A

i
is the facility opening cost of the second stage when scenario A happens. a1

i and b1
i

are constants, called marginal and setup costs respectively, for the first stage. a2
i and

b2
i are marginal and setup costs respectively, for the second stage. k is the number of

clients a facility serves. This problem is also an extension of The Linear-Cost Facility
Location Problem (cf. Mahdian et al. 2003).

Another way to represent the uncertainty in facility location is to model them as
robust problems. The Robust Fault-Tolerant Facility Location Problem (RFTFL) is
introduced by Chechik and Peleg (2010), who present approximation algorithms of
ratio 6.5 and 1.5 + 7.5α for the cases of only 1 facility can fail and up to α facilities
can fail respectively. In RFTFL, one has to choose a set of facilities that are in a
sense robust: i.e., in case of failure of up to α of the opened facilities, where α is
viewed as a constant, the cost of connecting clients to the facilities that did not fail
should be small. More precisely, we bound the total facility opening cost plus the
worst case client connection cost. Byrka et al. (2010a) improve the approximation
ratio to α + 5 + 4/α. For the case of single failure, Li et al. (2012a) further improve
the approximation ratio to 5.236. We show that a better analysis of the algorithm from
Byrka et al. (2010a) yields an approximation ratio of α + 4.

In this paper we also present a new problem named The Robust Soft-Capacitated
Facility Location Problem (RSCFL), in which we have to further satisfy the soft-
capacity constraint of each facility. The Robust Linear Cost Facility Location Problem
(RLCFL) is defined analogously as above. Again we use the reduction between them
and devise a constant factor approximation algorithm.

The rest of this paper is organized as follows. In Sect. 2 we introduce the formal
definitions and reduction between different problems. In Sects. 3 and 4 we provide and
analyze approximation algorithms for stochastic and robust version of the problems
respectively. We make concluding remarks in Sect. 5. The clients in all problems
considered here have only unit demands, except in the dynamic case which will be
defined later. It is easy to generalize the unit-demand models to the case of arbitrary
demands without loss in approximation guarantee. Each client is connected to only
one facility. All the distances satisfy the triangle inequality.

2 Definition

In TSFL, we are given a graph G, a discrete set of clients D, a discrete set of candidate
locations F where to build facilities, two decision stages, and a polynomial number of
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scenarios each with a prefixed probability pA for scenario A (A essentially represents
a subset of clients). Upon the first stage, we open facilities without the specific knowl-
edge of clients, with facility opening cost f I

i for each facility i ; then in the second
stage the realized scenario A enters (a subset of clients appear), we are allowed to
open additional facilities but with much higher opening cost f A

i . Finally connect each
client to the nearest opened facility. The aim is to minimize the facility opening cost
of the first stage plus the expected cost incurred in the second stage.

TSLCFL is an extension of TSFL, where the facilities opened in two stages incur
linear costs. The first stage facility opening cost is f I

i = aI
i k + bI

i for each facility i.
aI

i and bI
i are the constant marginal cost and setup cost of the first stage, respectively,

with aI
i ≤ a A

i , and k the number of clients facility i serves. The second stage facility
opening cost f A

i = a A
i k + bA

i , where a A
i and bA

i are the constant marginal cost and
setup cost of the second stage for scenario A, respectively.

TSSCFL is an extension of TSFL, where there is a soft-capacity ui associated with
each facility i. If a facility is to serve k clients, we have to open it �k/ui� times at a
cost of �k/ui� fi .

In RFTFL, we are given a graph G, two discrete sets of clients D, a discrete set of
candidate locations F where to build facilities, and an adversary who can close up to
α facilities after opening and assignment. Any client whose serving facility is closed
by adversary has to be reassigned to the nearest facility that is still open. The aim is to
minimize the sum of the facility opening cost, the connection cost, and the increment
of the reassignment cost of the worst case.

The Robust Linear-Cost Facility Location Problem (RLCFL) is an extension of
RFTFL, where the facility opening cost is fi = ai k + bi for each facility i. ai and bi

are the constant marginal cost and setup cost of the first stage, respectively, and k the
number of clients facility i serves.

The Robust Soft-Capacitated Facility Location Problem (RSCFL) is an extension
of RFTFL, where there is a soft-capacity ui associated with each facility i. If a facility
is to serve k clients, we have to open it �k/ui� times at a cost of �k/ui� fi .

3 Reduction

We now build the reductions between the facility location problems mentioned above,
based on the reductions developed in Mahdian et al. (2006). We define a variant of
TSFL as The 2-Stage Stochastic Facility Location Problem With Different Connection
Cost (TSFLD), where the service cost of client j connected to facility i is c1

i j if i is

opened in the first stage and is c2
i j if i is opened in the second stage, with c1

i j ≤ c2
i j .

Here all the c1
i j and c2

i j satisfy the triangle inequality respectively.

Lemma 1 We have a ρ-approximation algorithm for TSLCFL, if there is ρ-
approximation algorithm for TSFLD.

Proof For any instance I of TSLCFL, we transform it to a new instance I ′ of TSFLD
with the first stage facility cost f I

i = bI
i , the second stage facility cost f A

i = bA
i ,

and the connection cost c1
i j = aI

i + ci j when client j is connected to facility i opened
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in the first stage, c2
i j = a A

i + ci j the second stage. So we have c1
i j ≤ c2

i j provided

that aI
i ≤ a A

i . And it is easy to show that the transformed instance satisfy the triangle
inequality.

Lemma 2 We have a 2ρ-approximation algorithm for TSSCFL, if there is
ρ-approximation algorithm for TSLCFL.

Proof For any instance I of TSSCFL, we construct an instance I ′ of TSLCFL. The
connection cost remain the same. The facility cost of facility i is changed to (1+ k−1

ui
) fi

and (1 + k−1
ui

) f A
i if k ≥ 1 and 0 if k = 0. Thus for every k ≥ 1, � k

ui
� ≤ 1 + k−1

ui
≤

2 · � k
ui

�.

With analogous analysis, we can make similar arguments in the robust case.

Lemma 3 We have a ρ-approximation algorithm for RLCFL, if there is
ρ-approximation algorithm for RFTFL.

Lemma 4 We have a 2ρ-approximation algorithm for RSCFL, if there is
ρ-approximation algorithm for RLCFL.

4 The 2-stage soft-capacitated facility location problem

We first show that TSFLD is in fact a special case of DFL, thus it can be solve by
the currently best 1.86-approximation algorithm for DFL in Ye and Zhang (2006).
DFL is introduced by Roy and Erlenkotter (2002). In the DFL, we are given a set
of facilities F, a set of clients D, and the time periods numbered from 1 to T . At
each time period t, a client j ∈ D is specified by a demand dt

j that can be served by
facilities opened at time t or earlier. A cost f t

i is incurred when the facility i ∈ F
needs to be open at time period t. A cost cst

i j is incurred for supplying one unit demand
of client j in time period t from facility i opened at the beginning of time period s
(cst

i j = ∞ for t < s). The objective is to choose 0a subset of facilities F to open at
each time period, such that all demands of the clients are satisfied and the total cost is
minimized. Here we also assume the triangle inequality: cst

i1 j1
≤ cs′t

i2 j1
+ cs′t ′

i2 j2
+ cst ′

i1 j2
for any i1, i2 ∈ F, j1, j2 ∈ D and time periods 1 ≤ s ≤ s′ ≤ t, t ′ ≤ T . It is clearly
that if T = 1, DFL reduces to UFL.

We present the program for TSFLD. Let x1
A,i j = min{xA,i j , yi } and x2

A,i j =
xA,i j − x1

A,i j . ci j is the cost of connecting client j to i. yi and yA,i are the extents to
which facility i is opened in the first stage and in the second stage under scenario A,

respectively. xA,i j is the extent to which j is connected to i in scenario A. We have
the following program.
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Minimize
∑

i∈F
f I
i yi +

∑

A

pA

(
∑

i

f A
i yA,i +

∑

j∈A

∑

i

(
c1

i j x1
A,i j + c2

i j x2
A,i j

) )

s. t.
∑

i

xA,i j ≥ 1 ∀A ∀ j ∈ A;

xA,i j ≤ yi + yA,i ∀i ∀A ∀ j ∈ A;
xA,i j , yi , yA,i ≥ 0 ∀i ∀A ∀ j ∈ A.

We now reduce TSFLD to DFL. Suppose the scenario set is {A1, A2, . . . , Am},
where m is a fixed integer, and The probability associated with Ak is pk . Then we
set the time periods as 0, 1, . . . , m. Set the client set as {(k, j),∀Ak,∀ j ∈ A}. The
demand associated with client (k, j) is pk in period k and is 0 otherwise. The service
cost is c1

i j if client (k, j) is connected to facilities opened in period 0, is c2
i j in period

k and is infinite otherwise. The facility set remains unchanged. The opening cost in
the period 0 is f I

i , and is pk f Ak
i in period k.

It remains to show that the triangle inequality cst
i1 j1

≤ cs′t
i2 j1

+ cs′t ′
i2 j2

+ cst ′
i1 j2

, j1, j2 ∈
D, 1 ≤ s ≤ s′ ≤ t, t ′ ≤ T, is also satisfied. If s = 0, we further suppose s′ = t =
t ′, otherwise the right side becomes infinity which the inequality naturally follows.
Then inequality becomes c1

i1 j1
≤ c2

i2 j1
+ c2

i2 j2
+ c1

i1 j2
. By the definition of TSFLD,

c1
i j ≤ c2

i j , for i ∈ F and j ∈ D. Thus the inequality holds. If s 
= 0, we can suppose
s = t = s ′ = t ′, otherwise the both sides of inequality is infinite. In this case the
inequality becomes c2

i1 j1
≤ c2

i2 j1
+ c2

i2 j2
+ c2

i1 j2
which also follows from the definition

of TSFLD.
Thus we have shown that TSFLD is a special case of DFL. We now solve TSFLD

with the 1.86-algorithm for DFL and have the following theorem.

Theorem 1 There is a 1.86-approximation algorithm for The 2-Stage Facility Loca-
tion Problem with Different Connection Cost.

Considering Lemmas 1 and 2, we have solved TSLCFL and hence TSSCFL.

Theorem 2 There is a 1.86-approximation algorithm for The 2-Stage Linear Cost
Facility Location Problem.

Theorem 3 There is a 3.72-approximation algorithm for TSSCFL.

5 The robust soft-capacitated facility location problem

We first show that a better analysis of the algorithm for RFTFL from Byrka et al.
(2010a) may render an approximation factor of α + 4, which improves their result
of α + 5 + 4/α. The key difference lies in the tighter upper bound for the distance
between client and the farthest facility.
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The LP relaxation for RFTFL is as follows.

Minimize
∑

i∈F
fi yi+ max

A

∑

j

∑

i

ci j xA,i j

s.t.
∑

i

xA,i j ≥ 1 ∀A ∀ j;

xA,i j ≤ yi ∀i ∀A ∀ j;
xA,i j = 0 ∀A ∀i ∈ A ∀ j;

xA,i j , yi ≥ 0 ∀i ∀A ∀ j.

Here, xA,i j is the extent to which client j is connected to facility i if the scenario A
happens, i.e. the facilities in subset A is closed by the adversary. |A| ≤ α, where α is
the maximal number of facilities the adversary can close. Note that A can be a subset
of both opened and not opened facilities.

Let (x∗, y∗) be an optimal fractional solution to the above relaxed LP. We scale
it by a factor of γ (which will be set later), i.e. we set ȳi = min{1, γ · y∗

i }, x̄A,i j =
min{1, γ · x∗

A,i j }. For a single client-scenario pair ( j, A), sort the facilities of which
xA,i j > 0 in nondecreasing order with respect to ci j . Let i ′ be the first facility in this
order such that x∗

A,i1 j +x∗
A,i2 j +· · ·+x∗

A,i ′ j ≥ α+1
γ

. We split facilities when necessary

to ensure that x∗
A,i1 j + x∗

A,i2 j + · · · + x∗
A,i ′ j = α+1

γ
. Note that

∑
i x∗

A,i j = 1 for every
j and A. We call the facility set {i1, i2, . . . , i ′} the neighborhood of client j. Then we
have the following lemma.

Lemma 5 Also let C( j,A) = ∑
i ci j x∗

A,i j denotes the fractional connection cost of

client j in scenario A. Then we have ci ′ j ≤ γ
γ−α−1 · C( j,A), where ci ′ j is the largest

distance between client j and the facilities in the neighborhood of j.

Proof For a pair ( j, A), let F ′ = {i1, i2, . . . , i ′}, then
∑

i∈F\F ′ x∗
A,i j = 1− α+1

γ
. For

i ∈ F\F ′, we also have ci j ≥ ci ′ j . So C( j,A) = ∑
i ci j x∗

A,i j ≥ ∑
i∈F\F ′ ci j x∗

A,i j ≥
ci ′ j (1 − α+1

γ
).

The algorithm opens facility randomly as follows.

– If there exist i among i1, i2, . . . , i ′ such that ȳi = 1. Then facility i will be opened
by probability 1. In this case ci j ≤ ci ′ j ≤ γ

γ−α−1 · C( j,A).

– If there is no i among i1, i2, . . . , i ′ such that ȳi = 1, then we round the facilities
i1, i2, . . . , i ′ using the rounding scheme for The Fault Tolerant Facility Location
Problem (cf. Byrka et al. 2010b), which turns α + 1 fractional connections to
facilities at distance at most d into α+1 integral connections to facilities at distance
at most 3d. Since at most α facilities will be closed by the adversary, there remains
an open facility for client j in scenario A at distance at most 3 · γ

γ−α−1 · C( j,A).

With the analysis above, it is clear that we have a (γ,
3γ

γ−α−1 )-approximation algo-
rithm for RFTFL. Setting γ = α + 4, the approximation ratio is α + 4.
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Theorem 4 There is a (α+4)-approximation algorithm for The Robust Fault Tolerant
Facility Location Problem, of which up to α facilities can be closed by the adversary.

With Lemma 3, 4, we have the following theorems.

Theorem 5 There is a (α + 4)-approximation algorithm for The Robust Linear-Cost
Facility Location Problem, of which up to α facilities can be closed by the adversary.

Theorem 6 There is a 2(α + 4)-approximation algorithm for The Robust Soft-
Capacitated Facility Location Problem, of which up to α facilities can be closed
by the adversary.

6 Concluding remark

In this paper we have proposed and analyzed the stochastic and robust versions of
the soft-capacitated facility location problems. There are relatively very few efforts
devoted to designing approximation algorithms to solve combinatorial problems with
uncertainty either stochastically or robustly. Incorporating uncertainty into combinato-
rial problems is a vital way to make these classic models more practical. Approximation
algorithms may also become more influential in areas like engineering or operations
research if they are used to solve more realistic problems and have good performances.
We believe this trend will become more prominent in the future.
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